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SUMMARY 

The fractal properties of a plume dispersing in a turbulent velocity field have been 
examined using Large-Eddy Simulation results for neutral and convective boundary 
layers. Scalar concentration isosurfaces were found to have a fractal dimension of about 
1.3 from a two-dimensional plume cross-section, consistent with atmospheric and 
laboratory results. A fractal generation technique has been developed that correctly 
matches a specified mean and variance distribution for the plume. The spatial correlation 
scale of the fractal realizations can also be specified, and the one-point probability density 
function can be chosen as clipped-normal or lognormal. Realizations generated with the 

fractal technique show reasonably close resemblance to the LES results. 

The small-scale structure of the plume is further analyzed using multifractal 

techniques, and a the generation methodology is extended to incorporate unequal 

partitioning of the random variance during the refinement process. This procedure 

corresponds to the localization of small-scale energy in the turbulent cascade process 
which leads to an intermittent dissipation field. The extended fractal/multifractal model 
maintains the fractal isosurface properties, but also yields a multifractal dissipation field 
consistent with laboratory observations. The multifractal spectrum of the dissipation 
field can be adjusted to match observations and the LES calculation results. The visual 

• appearance of the dissipation field from the fractal/multifractal model is much more 
intermittent than the fractal realization, and the concentration field shows more localized 
small-scale fluctuations. These features give better correspondence to the LES 

realizations. 
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1. INTRODUCTION 

The dispersion of material in the atmosphere is a chaotic process, due to the 

turbulent nature of the wind field. Molecular diffusivity is very small, and contaminants 

are transported by the local wind, which induces distortions into the evolving 
concentration field. The stretching and shearing motions of the turbulent wind field 
produce an increasingly complex concentration field, and eventually cascade the scale of 
the variations down to the smallest sizes where molecular diffusivity is effective. The 
detailed structure of a dispersing plume of material is therefore highly convoluted, and 
the smooth Gaussian shapes predicted by most dispersion models are only relevant to 
long term or ensemble averages. 

Many applications of atmospheric dispersion modeling are concerned with short- 

term or near-instantaneous concentration measurements. An example is the obscuration 

problem, where the ability to see through an obscurant cloud depends on the 
instantaneous distribution of material. Long-term averages are not an appropriate 
measure for this problem, since the 'average' cloud does not exist at any instance in time. 
Instead, we need to characterize the random fluctuations in the cloud to determine the 
probability of obscuration. We may also need to characterize the temporal and spatial 
variations of the obscuration, if the duration and extent of periods of visibility are 
important factors. Other examples where the small-scale statistical structure is important 
include the dispersion of highly toxic materials, where short-term exposure can cause 

serious health effects, and chemically reactive dispersion, where interaction between 
species can occur on very fast timescales and is determined by very localized conditions. 

The preceding discussion has introduced the notion of an instantaneous cloud as a 
random field with complicated structure on all scales down to the molecular mixing scale. 
This random nature of a dispersing cloud or plume has long been recognized by 
atmospheric dispersion modelers, and attempts to represent the phenomenon were 
initiated by Gifford (1959) using the meandering plume concept. Model validation was 
one of the principal reasons for the study of the statistical fluctuations, since the 
inherently unpredictable variation in an observed concentration can mask any model 
errors or differences between models (Fox, 1981). However, direct interest in short-term 
concentration values for assessing either toxic effects, flammability limits, or visibility 
estimates has also prompted recent research in this area (e.g., Durbin, 1980; Fackrell and 
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Robins, 1982a,b; Sawford and Hunt, 1986; Dinar et al., 1988; Chatwin and Sullivan, 
1990; Mylne and Mason, 1991). 

Gifford's (1959) model only accounts for the large-scale, meandering motions 

which move the entire plume in a coherent fashion. These motions are a major 

contributor to the variance in the concentration close to the plume source, but the 

meandering plume model neglects the small-scale fluctuations entirely. A practical 
methodology for predicting the total concentration fluctuation variance was developed by 

Sykes et al. (1986) under the sponsorship of the Electric Power Research Institute (EPRI). 
The basis of the modeling is second-order turbulence closure, and the variance prediction 

has been incorporated into a Gaussian plume and a Gaussian puff model. The model 

development is described in a series of reports by Lewellen et al. (1988). 

For some applications, a prediction of the variance or one-point probability 

distribution function is insufficient. In order to represent the visual appearance of a 
plume, for example, a complete realization of the instantaneous concentration field as a 
function of time and space is necessary. The one-point information is an important part 
of the fluctuation description, but a more complete representation of the spatial and 
temporal structure is needed. Some useful information is obtainable from photographic 
data or other experimental measurements (Sreenivasan, 1991), but complete quantitative 

descriptions are very difficult to obtain. A complementary data source is numerical 
simulation, and the Large-Eddy Simulation (LES) studies of dispersing plumes by Sykes 

and Henn (1992) and Henn and Sykes (1992) provide detailed results on the three- 
dimensional, time-dependent behavior of a plume dispersing in a neutral and a convective 

boundary layer, respectively. 

While LES provides a complete description of the instantaneous plume over the 
range of resolved calculation scales, the technique demands large computational 
resources since the flow dynamics must be computed in addition to the plume dispersal. 
A more practical scheme is required that can utilize the statistical information from an 
ensemble average prediction to generate realistic spatial and temporal variability without 
explicit dynamics. The most appropriate description of the turbulent field geometry is in 
terms of fractal structures, which embody the self-similar characteristics of the 
Kolmogorov inertial range and have been extensively applied to turbulent flows, e.g. 
Sreenivasan and Meneveau (1986), Prasad and Sreenivasan (1990a,b), Lovejoy and 

Mandelbrot (1985). 
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The objective of the study reported here is the development of techniques for 

generating representations of dispersing plumes that properly describe the random small- 

scale structure of the fluctuating concentration field. Fractal geometry provides the 

framework for analyzing and constructing the complex random fields; we analyze the 

LES plume data of Sykes and Henn (1992) and Henn and Sykes (1992), and incorporate 

the information into new fractal generation methods. We should emphasize that our 

objective in generating a fractal plume realization is,not simply to adjust parameters of a 

fractal model to obtain a field similar to an atmospheric plume, but rather to develop a 

methodology that can utilize the quantitative predictions of models such as that described 

by Sykes et al. (1986). We therefore require a fractal field that is consistent with a 

predicted mean concentration, the fluctuation variance, and a spatial/temporal correlation 

scale. In addition, the generated realization should match the statistical structure of the 

small-scale variations as closely as possible, and the fractal analysis of the LES fields will 

be employed to determine the important characteristics of the small scales. Section 2 

describes the results of the analysis and the development of a fractal generation technique 

based on a recursive or iterative refinement. 

Recently, much research on random fields has focused on the multifractal nature 

of singular quantities such as energy dissipation (e.g., Meneveau and Sreenivasan, 1987). 

The concept of a fractal is actually only applicable to a set of points, as distinct from a 

continuous field, and is generally applied to isosurfaces or contour levels. This does not 

provide a complete description of the entire concentration field, and there is evidence that 

the fractal properties may depend somewhat on the choice of level (Lane-Serff, 1993). 

The multifractal definition is based on a functional description and therefore gives a more 

complete description of a field, but the definition is couched in terms of the singularities 

of the field and describes the measure of the sets of spatial points where the function 

displays a particular rate of divergence as the sampling scale is reduced. This is clearly 

appropriate for dissipation fields, which are concentrated in very small regions when the 

Reynolds number is high and the molecular diffusivity is very small. In Section 3, we 

discuss the multifractal properties of the dispersing plume and incorporate some of these 

properties into the fractal generation model. The extended fractal/multifractal model 

gives an improved representation of the small-scale plume structure and in particular 

provides a proper dissipation field. 

Section 4 describes the application of our fractal generation methodology to the 

animation of a plume.   The time-dependence can be considered as an independent 



dimension, similar to the spatial dimensions, but the localized nature of the generation 
technique allows the realization to be constructed locally in time. This avoids the 
requirement that the entire time series be pre-computed and stored before display. 

Instead, storage is only needed for the spatial field, which is modified as time is 

advanced. The small scales are modified more rapidly than the large scales and the 

proper fractal/multifractal is preserved. This technique could form the basis of a real- 
time display with relatively small storage requirements. Concluding remarks are 

presented in Section 5. 



2. FRACTAL ANALYSIS AND REPRESENTATION 

As a preliminary step towards a realistic description of a turbulent plume in the 
atmosphere, we have examined some simple fractal field generation methods to 
determine their consistency with known plume characteristics. The detailed description 
of this work is included as Appendix A to this report and is briefly summarized here. 
Fractal geometry has been used to analyze turbulent fields in several contexts 

(Sreenivasan and Meneveau, 1986; Prasad and Sreenivasan, 1990a,b; Lovejoy and 
Mandelbrot, 1985), and provides a natural method for describing the self-similar nature of 

the turbulent cascade process. The characterization of scalar isosurfaces in terms of 
monofractal properties is imperfect, but is a reasonable step toward a more general 

approach. Fractal fields can be generated with the appropriate degree of complexity and 
spatial structure and can be used to produce 'cloud-like' fields (Lovejoy and Mandelbrot, 

1985). Our objective here is not simply to produce a visual image reminiscent of a 
dispersing plume, but rather to generate a 'realization' that is statistically consistent with a 

given plume and can therefore be used for quantitative analysis. 

We have also analyzed the LES (Large-Eddy Simulation) plume calculation data 

of Sykes and Henn (1992) and Henn and Sykes (1992), which provide a number of time- 
dependent, three-dimensional 'realizations' of the instantaneous plume. The numerical 
results have previously been analyzed to obtain statistical measures such as concentration 
moments, spatial and temporal correlations, and one-point probability distribution 

functions, and these parameters will be required for a fractal generation scheme. We 
performed fractal dimension analyses of the concentration fields in these 'realizations' in 

order to quantify a fractal description of the LES plumes. Perimeter-area relations and 
box counting methods were utilized, and the dimension of a concentration contour in a 

two-dimensional cross-section was found to be roughly 1.30 - 1.35 using the two 
different estimation methods. This is slightly smaller than observational estimates from 

natural clouds. 

We next examined techniques for generating a fractal field with the correct 
ensemble mean and variance values. A simple method for producing a random fractal 

realization was demonstrated, giving either a 'clipped-normal' probability distribution 

(Lewellen and Sykes, 1986) or a lognormal probability distribution. The recursive 

refinement technique was adapted to provide a consistent representation of the mean and 



variance of an inhomogeneous concentration field. The interpolation methodology of the 
standard method was replaced by a randomized pulse approach to obtain a good match 
with the ensemble statistics. It was found that the concentration statistics were modified 
by the interpolation step, which gives the concentration value on the successively refined 
grid before the addition of the new random component. The interpolation effectively 

reduces the local variance, since it averages two random numbers, so the ensemble 
statistics of the realizations becomes increasingly inaccurate as each new level of grid 
points is added. The randomization of the pulse position in the new method avoids the 
implicit averaging problem and gives correct ensemble statistics for inhomogeneous 

fields, such as a dispersing plume. The fractal generation scheme can be used to generate 

a concentration field with the desired fractal dimension and accurate ensemble mean 

moments of first and second order; the scheme also requires the specification of a spatial 

correlation scale as the outer scale for the fractal field. 

Finally, we compared the characteristics of the fractal-generated plume cross- 
sections with the LES realizations. The application of the resulting technique using 

ensemble statistics produced reasonably good 'realizations' of the LES plume. 



3. MULTTFRACTAL ANALYSIS AND 
REPRESENTATION 

The representation of a concentration field, which is a function of space and/or 

time, as a fractal is known to be incomplete since fractal concepts strictly only apply to 

sets of points. The generation technique described in Section 2 (and Appendix A) 

produces a concentration field with the appropriate mean and variance and also with 

isosurfaces that exhibit the correct fractal dimension. Recently, the multifractal concept 
has been introduced to characterize the behavior of intermittent fields such as the energy 
dissipation. The definition of a multifractal involves the functional behavior of the field, 
and therefore gives a more complete description than conventional fractal analysis. The 
fractal fields generated by the methods of Section 2 were therefore analyzed to determine 
their multifractal properties and compared with those of the LES realizations and 
laboratory data. The detailed description of this work is given in Appendix B, and is 

summarized here. 

We analyzed the pseudo-dissipation field from the fractal realizations, defined as 

the square of the concentration gradient, for comparison with the observational data on 
true scalar dissipation fields. The scalar pseudo-dissipation field derived from the fractal 

generation scheme of Section 2 fails to exhibit the intermittent, multifractal behavior 
observed in experimental measurements of scalar dissipation fields (Prasad and 
Sreenivasan, 1990b). The homogeneous nature of the random pulse addition gives small 
scale energy everywhere with the same likelihood. Since the gradient operator 
emphasizes the smallest scales, we find a dense distribution of dissipation peaks rather 
than intermittent spikes. The multifractal analysis shows that the dissipation field is 
essentially monofractal, that is the multifractal spectrum consists of a single point. 

We therefore generalized the fractal model to produce a multifractal dissipation 
field while maintaining the simple fractal nature of the scalar field. Noting that a simple 

binomial multiplicative cascade process produces intermittent distributions and has been 

shown to agree well with measurements of turbulent kinetic energy dissipation 

(Meneveau and Sreenivasan, 1987), a model was constructed which randomly allocates 

variance unequally in a fixed ratio to successive levels of refinement. The unequal 

partition of the variance as the cascade proceeds concentrates variance in localized 

regions and actually produces a multifractal distribution of the variance. Since the scalar 



field is made up of a summation of random pulses from many refinement levels with 
decreasing variance, it is dominated by the larger scale structures that contain most of the 
variance. The fractal behavior of the concentration field is maintained since the average 
variance at each iteration level is still controlled by co-dimension, H, and, hence, the 

power spectra is unchanged. The fractal behavoir of the scalar field remains unchanged 

since the total variance at each level is still controlled by the given codimension. 
However, the gradient operator involved in calculating the pseudo-dissipation field 

emphasizes small scales. In fact, the summation of pulse gradients diverges, so that the 
pseudo-dissipation field becomes highly intermittent and exhibits multifractal behavior. 
The partition parameter can be chosen to match observational dissipation data, while the 
concentration field still exhibits the appropriate fractal isosurface behavior. An important 
feature of the model is that it is still completely local and may be applied to 

inhomogeneous fields. 

Idealized time series were generated with the new fractal/multifractal model using 

clipped-normal and lognormal distributions to define the pulses. An analysis of these 
show that the resulting multifractal spectra agree very well with the (assumed) universal 

spectrum derived from measurements of turbulent jets and wakes, even though the 
pseudo-dissipation fields from the two distributions are somewhat different in character. 

Analysis of LES neutral boundary layer plumes shows that the pseudo-dissipation fields 
reveal multifractal behavior, although the scaling range is limited. Application of the 
fractal/multifractal model using the LES statistics yields plumes realizations which are 

similar in appearance to the LES realizations. The fractal dimensions of plume 
isosurfaces from the LES and model are close (1.36 and 1.30 respectively); the model 
dimension is unchanged from the simple fractal model results given in Section 2 
(Appendix A). The LES multifractal spectrum is close to the model and experimental 
spectra, although it may indicate less intermittency in the LES pseudo-dissipation fields. 
However, given the uncertainty resulting from the small scaling range, the match with the 

presumed universal spectrum is reasonably good. 
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4. SCALAR FIELD CONSTRUCTION FOR 
ANIMATION 

A fractal animation model has been developed which simulates the time evolution 
of scalar fields in one, two, or three dimensions. This animation model is simply an 
extension of our successive refinement technique by considering time as an independent 
dimension. In this fractal animation scheme, 'time pulses' are generated in addition to the 

'spatial pulses' of the static fractal models. 

Consider a one-dimensional fractal generation. In the static model we add 

random pulses on successively smaller spatial scales with appropriately scaled variance. 

The location of the pulses is randomized in order to give an accurate representation of the 

scalar field variance. The method has also been adapted for inhomogeneous fields and 

provides either clipped-normal or lognormal one-point probability density functions. The 

concentration field, c(x), can thus be written schematically in the form 

c(x) = c+X5>mP„(x-*m) (4.1) 
n    i 

where the overbar denotes the ensemble average, n is the refinement level, and i is the 
range of overlapping spatial pulse functions that contribute to the concentration fluctuation 

at the location x. The spatial pulse function, Pn(x-xni) , with width A and centered at 

x„i, is defined in one dimension as 

P{x-x0) = - 
\X — XQ\       I ■ 

1       —,   |*-*0|<A (42) 

0, |x-x0|>A 

The pulse amplitude ani is chosen randomly from a Gaussian distribution with zero mean 

and standard deviation an, where, on =2~nH<J0. The constant H controls the fractal 
dimension of the generated field. Now, consider time as an added dimension. The local 
concentration can now be written 

c{x,t) = C+Yl^animP{x-Xni)T{t-tnm) (4.3) 
n    i    m 

where m is the range of overlapping time pulse functions at a given iteration level n. The 

time pulse function, T(t -*„„,), with width Ar at time t0 is defined as 



T(t-t0) = 
t-t0 

1_   ^'   l'-'°l<A' (4.4) 

0, |f-r0|> Af 

This process can be envisioned as a one-dimensional field sweeping through static 

time pulses. At each new instant in time, time pulses are interpolated as they lose or gain 

influence on the field. Consider iteration level «, with time pulses of half-width 

A„ = 2~n- A0. Once the field has moved through a time A„ , an older time pulse loses its 

influence on the concentration field and a new time pulse gains influence. At any given 

time, only three pulses affect the field since the pulse centroids fall within A„ while the 

width of the pulses is twice A„ . Therefore, it is only necessary to store three time pulses 

at each level of iteration, and the summation of overlapping time pulses is carried out 

over only three pulses. 

The animation technique is easily extended to higher dimensions by using the 

product of spatial triangular functions for each dimension as well as the time pulse 

function. Therefore, for two dimensions we have 

c(x,y,t) = c+^J,J,anijmP(x-xni)p(y-ynj)T(t-tnm)     (4.5) 
n    i    j   m 

where y is the second space coordinate and ;' is the corresponding range of overlapping 

pulses. 

Real plumes generally have some mean flow translation and large scale 

meandering along with time evolution. Translation is created by adding a further 

extension to our simple animation procedure, namely using a mean flow velocity to move 

the streamwise spatial pulse locations downstream. Accordingly, at each time step, new 

streamwise pulses are created at the domain origin to replace the pulses that move 

downstream. Unfortunately, accounting for large scale meandering is not a simple task 

and a complete procedure has yet to be established. 

10 
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5. CONCLUDING REMARKS 

The instantaneous structure of a plume of material dispersing in the atmosphere is 

a random field with detailed structure on a wide range of scales. The self-similar nature 

of the turbulence spectrum suggests a fractal description of the scalar concentration field, 

and Large-Eddy Simulation results for a plume in both a neutral and a convective 

boundary layer have been analyzed to determine appropriate fractal properties. It is 

found that the LES concentration isosurfaces exhibit a fractal dimension in general 

agreement with atmospheric observations of water and smoke clouds. 

Using a combination of the successive refinement and random pulse techniques, 

we have developed a method for generating a fractal field with given statistics. The 

method adds successively smaller scale triangular pulses with random amplitude and 

random location. The scale of the pulse is halved at each refinement, and the amplitude 

variance is reduced appropriately. Ensemble mean and variance as well as the spatial 

correlation scale can be specified arbitrarily and the one-point probability distributions 

can be specified as clipped-normal or lognormal. The realizations generated using this 

technique will be consistent with the given statistics. 

The fractal generation technique was generalized to incorporate a multifractal 

aspect in the small-scale fluctuations. It was shown that an unequal partition of the 

variance during the refinement process yields a multifractal dissipation field but 

maintains the fractal isosurface properties. The resulting realizations are much improved 

as representations of a turbulent plume, and the small-scale variations are correctly 

localized in regions of intermittent dissipation. 

We have developed a technique for representing the instantaneous structure of a 

dispersing plume. The technique requires the specification of the mean and variance of 

the concentration field, as well as the spatial correlation scale, and the realizations will be 

consistent with the given statistics. The statistics can be inhomogeneous, so that the 

plume can be localized in space, and the technique can be efficiently implemented for 

animation purposes since the pulses are defined in real space and time and only need to 

be considered locally. The generation method can therefore be used with a dispersion 

model such as that of Sykes et al. (1986) to produce a representation of a complete plume. 

11 



While much progress has been made in developing techniques for representing the 

instantaneous structure, there are several areas for further investigation. First, we are 

currently restricted to a choice of clipped-normal or lognormal statistics for the 

concentration fluctuations, while observations and numerical simulations show 

intermediate distributions between these two. Early time meandering plumes and plume 

edges tend to be intermittent and close to a clipped-normal distribution, while the plume 

interior far downstream from the source is closer to a lognormal distribution. The 

transition between the two probability distributions needs to be characterized and a 

generalized representation technique needs to be found to improve the fractal realizations. 

The second area for future research is in the representation of large scale 

coherence and spatial anisotropy of the fluctuations. The early plume often contains a 

meandering component, where the entire plume is moved coherently by the large eddies. 

The plume also exhibits different characteristics in the streamwise and transverse 

directions. The techniques described in this report are essentially isotropic, and give the 

same characteristics on all scales. One can imagine a technique that modifies the simple 

triangular pulse shape to describe different spatial structures, but it is far from clear how 

to specify the appropriate shapes for a given plume. Further research is needed to 

characterize this behavior and develop appropriate representation techniques. 
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Abstract 

Fractal analysis techniques have been applied to the concentration fields from 

Large-Eddy Simulations of plume dispersion in a turbulent boundary layer. Fractal 

dimensions between 1.3 and 1.35 are obtained from perimeter-area and box-counting 

analyses for neutral and convective conditions. These values are close to previous 

estimates from atmospheric data. Methods for generating fractal fields with given 

statistical moments are examined and the simplest of these, the recursive refinement 

technique, is shown to be inadequate. The problem is shown to be the interpolation step 

of the procedure, which intrinsically reduces the variance with each refinement. Accurate 

statistical representation is obtained by replacing the interpolation step of the refinement 

technique with a sum of random pulses of appropriate width and random location. The 

pulse technique can easily be adapted to generate either clipped-normal or log-normal 

one-point probability distributions. Results from the fractal generation technique using 

simulated mean statistics are compared with realizations of instantaneous plume cross- 

sections from the Large-Eddy Simulations. The simulated probability distributions lie 

between the clipped-normal and the log-normal, so the fractal fields cannot match the 

realizations precisely. However, larger scale features of the plumes are generally well 

represented by the fractal method. 
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1.  Introduction 

Turbulent dispersion of a contaminant in the planetary boundary layer is a chaotic 

process. The instantaneous concentration field exhibits variations on a range of length 

scales and time scales, corresponding to the spectrum of motions in the turbulent velocity 

field. This random character of tracer dispersion has been recognized by atmospheric 

modelers and has lead to explicit statistical descriptions of the concentration variable. 

There has been extensive research on characterizing the small-scale fluctuations in the 

concentration field, both experimentally in the laboratory (Fackrell and Robins, 1982) 

and observationally in the atmosphere (Lewellen and Sykes, 1986; Sawford, 1987; Mylne 

and Mason, 1991). These studies have been supported by modeling efforts (Durbin, 

1980; Kaplan and Dinar, 1988; Sykes et al, 1984) and considerable progress has been 

made in our understanding of the fluctuation statistics. 

For model evaluation applications, where it is important to characterize the 

variability in a sampler observation, one-point statistics are usually sufficient. Most 

tracer measurements involve a time-average at a fixed location. However, there are other 

situations where more detailed information about the spatial and temporal structure of 

the plume is required. For example, any system with a nonlinear response to the 

concentration level needs more statistical information to predict the integrated response 

from passage through the plume. Such response systems might include human health 

effects and toxicity, or visibility and optical propagation phenomena. A realistic 

representation of the complete concentration distribution is useful for the assessment of 

parameterized effects models. 

As a preliminary step towards a general description, we examine some simple 

fractal field generation methods to determine their consistency with known plume 

characteristics.  Fractal geometry has been used to analyze turbulent fields in several 

A-3 



contexts (Sreenivasan and Meneveau, 1986; Prasad and Sreenivasan, 1990a,b; Lovejoy 

and Mandelbrot, 1985), and provides a natural method for describing the self-similar 

nature of the turbulent cascade process. Multifractal cascade models have also been 

successfully applied to the study of turbulent flow fields (e.g., Prasad et al., 1988; 

Sreenivasan, 1991), but the mathematical definition of multifractal properties in terms of 

the structure of the field singularities (Lovejoy and Schertzer, 1991) is most appropriate 

for highly intermittent fields such as energy dissipation or scalar fluctuation dissipation. 

Scalar concentration fields do not exhibit singularities and are generally described in 

terms of a simple fractal isosurface dimension (Sreenivasan, 1991; Lane-Serff, 1993). 

The characterization of scalar isbsurfaces in terms of monofractal properties is imperfect, 

but is a reasonable step toward a more general approach. 

Fractal fields can be generated with the appropriate degree of complexity and 

spatial structure and can be used to produce 'cloud-like' fields (Lovejoy and Mandelbrot, 

1985). Our objective here is not simply to produce a visual image reminiscent of a 

dispersing plume, but rather to generate a 'realization' that is statistically consistent with a 

given plume and can therefore be used for quantitative analysis. We note, however, that 

simple fractal representations cannot necessarily reproduce the large-scale 'coherent 

structures' in a flow field (Sreenivasan and Meneveau, 1986), since the large-scale 

structures are generally determined by the mean flow geometry and do not exhibit self- 

similar structure 

The principal data source for the fractal parameters is the LES (Large-Eddy 

Simulation) plume calculations of Sykes and Henn (1992) and Henn and Sykes (1992). 

These explicit numerical calculations of the time-dependent, three-dimensional plume 

dispersion have provided a number of 'realizations' of the instantaneous plume. The 

numerical results have previously been analyzed to obtain statistical measures such as 

concentration moments, spatial and temporal correlations, and one-point probability 
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distribution functions, and these parameters will be required for a fractal generation 

scheme. In this paper, we shall present fractal dimension analyses of the concentration 

fields in order to quantify a fractal description of the LES plumes. 

Given the statistical plume parameters, we examine techniques for generating a 

fractal field with the correct ensemble mean and variance values. We present a simple 

method for producing a random realization with either a 'clipped-normal' probability 

distribution (Lewellen and Sykes, 1986) or a log-normal distribution. Finally, we 

compare the characteristics of the fractal-generated plume cross-sections with the LES 

realizations. 

2.  Fractal Analysis of the LES Plumes 

A detailed description of the numerical methodology employed in the LES 

calculations is given by Sykes and Henn (1992). Simulations were performed for a 

neutral, wind-tunnel boundary layer and for a free-convection layer driven by a surface 

buoyancy flux. Dispersion from elevated releases of a passive scalar was calculated for 

each flow, and the evolving plume was computed for several boundary layer heights 

downstream. A uniform translation velocity was imposed on the free-convection layer to 

produce a statistically-steady plume. 

The fractal analysis of the neutral and free-convection boundary layers was 

performed with both area-perimeter and box-counting analyses. Area-perimeter analysis, 

a method for estimating the fractal dimension of planar shapes, was first proposed by 

Mandelbrot (1977) and is the method used by Lovejoy (1982) in his investigation of 

satellite and radar pictures of rain and cloud areas. The area-perimeter relationship 

determines the complexity of the boundary of a shape since a very convoluted perimeter 

will be longer than a smooth one for the same enclosed area. The fractal dimension, D, 
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characterizes the degree of contortion of the boundary and is obtained from the relation 

P «= AD/2, where P is the perimeter and A is the area. A reasonable estimate of D 

requires a data set of area-perimeter pairs covering sufficient range for the exponent to be 

reliably determined. Lovejoy and Schertzer (1991) showed that the area-perimeter 

relation in its original form (given above) can only be used when non-fractal areas are 

enclosed by fractal perimeters. 

In Lovejoy's analysis (1982) of rain and cloud areas, a large database of satellite 

and radar pictures supplied the necessary information over a wide range of scales. 

However, for the LES plumes used in the current research, the range of cloud (plume) 

sizes was somewhat limited. In order to extend the range of sizes, cross-sections of the 

plume where taken at locations ranging from 0.83 to 6.67 boundary layer heights 

downstream of the source for the neutral case and 1 to 8 boundary layer heights for the 

convective case. Lovejoy showed that when the threshold on the satellite data of his 

study was varied, the sizes of the clouds changed, but the perimeters changed in the same 

self-similar manner. Therefore, in order to further extend the range of sizes, the threshold 

value defining the plume boundary was varied. Multiple independent realizations of each 

plume (eight for the neutral and six for the convective) were analyzed to improve 

statistical confidence in the power law relationship. 

Box-counting, a recursive technique for estimating the fractal dimension of a set, 

is described by both Mandelbrot (1982) and Feder (1988), and is employed by 

Malinowski and Zawadzki (1993) in their recent analysis of cloud surfaces. Similar 

approaches were used by Sreenivasan and Meneveau (1986) and Sreenivasan (1991) in 

their research on turbulent flows. The box-counting method utilizes a grid of rectangular 

boxes to cover the space occupied by a set, and counts the number of boxes needed to 

completely cover the set itself. This number will depend on the size of the covering 

boxes. If the number varies in proportion to a power of-the box size, the exponent is 
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called the box dimension of the set (Feder, 1988). The estimate of the box dimension can 

vary slightly due to the uncertainty in the placement of a given grid since a slight shift in 

grid location may change the number of boxes counted. Therefore, in order to obtain a 

better approximation of the fractal dimension of the set, the grid location was shifted on 

each level and the number of boxes counted was averaged. Edge effects due to data set 

truncation were avoided by only counting boxes centered within the range of data. 

The data sets chosen for box-counting analysis were iso-concentration contours 

obtained from vertical transverse slices of the LES plumes. LES calculations were 

performed on grids of 240 x 90 for the neutral boundary layer and 80 x 50 for the 

convective layer. Figure 1 shows typical contours for the neutral and convective 

boundary layers.   In Fig. 1, cm is the maximum mean concentration obtained from 

multiple realizations of the concentration field. Although the contour level is somewhat 

arbitrary, the chosen values fell within a range of concentrations (0.003 < c/cm < 0.3) that 

produced approximately the same fractal dimension (±0.05). The concentration value 

must be small enough to give an extensive contour but not so small that numerical errors 

are significant The locations of the plume slices were 5 and 8 boundary layer heights 

downstream of the source for the neutral and convective layers, respectively. For the 

convective layer, z, denotes the mixed layer depth, while H is the depth of the neutral 

layer (Sykes and Henn, 1992). Results of the area-perimeter and box-counting analyses 

for the neutral and free-convection boundary layers are shown in Figs. 2 and 3, 

respectively. 

Both Figs. 2(a) and (b) display approximately linear sections over most of the plot 

range. Since these two plots are on log-log scales, the linear sections indicate power law 

relations between the abscissa and ordinate variables. For the area-perimeter analysis, the 

relation P <* AD/2 is used to determine the fractal dimension (£>) of the plume boundary 

by a least squares regression of the data set. The areas of the plume cross-sections were 
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determined to be non-fractal, thus legitimizing the use of the area-perimeter relation for 

determination of the fractal dimension of the perimeter. The box dimension is also 

determined from a regression line fit through the box-counting results. For the neutral 

boundary layer (Fig. 2), the box dimension is 1.34 in the area-perimeter analysis and 1.36 

in the box-counting analysis. Results from the free-convection boundary layer (Fig. 3) 

indicate a fractal dimension of 1.32 using both methods. These fractal dimensions all had 

uncertainties of about ±0.05. 

A direct comparison between the results of the LES fractal analyses and those of 

other atmospheric fractal studies is not a simple task. Most previous fractal analyses have 

utilized cloud radiances (obtained by radar or satellite) and not. cloud densities (as in this 

study). There is no simple one-to-one correspondence between radiance and density, 

according to Cahalan and Joseph (1989). However, the lack of results pertaining to cloud 

densities necessitates comparisons between density and radiance results with the 

understanding that there is not necessarily a simple relationship between the two. 

Although the data sets studied here are neither rain nor cloud areas, it is 

reasonable to compare the results with those of cloud areas since both are being shaped 

by the ambient turbulence of the atmosphere. The results of the present study are 

consistent with those of Lovejoy (1982), who found (using the perimeter-area relation on 

cloud radiances) the cloud perimeter fractal dimension to be 1.35±0.05. Rys and 

Waldvogel (1986) also used area-perimeter analysis, however, their data set was radar- 

echo data of severe convective storms. They determined that large clouds had a fractal 

dimension of 1.36±0.1 large clouds and 1.0±0.04 for smaller clouds (PVD< 3 km). The 

low dimension for the smaller clouds was believed to be due to strong vertical winds 

found in thunderstorms. Furthermore, Prasad and Sreenivasan (1990b) estimated a 

dimension of 1.36 for typical cumulus clouds from box-counting analysis of cloud 

boundaries in ground-based photographs. Malinowski and Zawadzki (1993), however, 
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report a much higher value of 1.55 from one-dimensional horizontal sections through 

small cumulus clouds, but this is a different fractal measure and is not necessarily 

comparable with the planar section perimeter dimension reported here. 

In addition to fractal studies on cloud data, other laboratory and analytical results 

have been published. Prasad and Sreenivasan (1990b) used the box-counting method to 

analyze images of jet sections (produced from laser-induced fluorescence techniques) and 

determined that the fractal dimension of jet boundaries was 1.36. Over a wide range, this 

value was independent of the threshold defining the boundary. In addition, based on the 

relative turbulent diffusion theory, Hentschel and Procaccia (1984) predicted a slightly 

higher cloud perimeter fractal dimension in the range between 1.37 and 1.41. 

3.  Fractal Generation Technique 

The most basic fractal field generation method uses recursive grid refinement with 

a random addition at each level of iteration (Peitgen and Sauper., 1988). In one 

dimension, random values are generated on an initial coarse grid of size Ao- The random 

numbers are selected from a Gaussian distribution with zero mean and standard deviation 

OQ. The refinement process interpolates the initial values onto a finer grid with size 

Ai=Ao/2, and then adds a random number to every point in the new grid from a 

distribution with standard deviation C\. The fractal dimension of the resulting field is 

controlled by the specification of ox = cr02"a. The process can be repeated to give a field 

on a grid of size A„ = 2~"A0, using a standard deviation of on = 2~naGQ to generate 

the random numbers at that level. The process is illustrated schematically in Fig. 4, and 

yields a fractal dimension of D = 2-a for an isosurface in two dimensions. 

In considering the recursive refinement technique for the representation of a scalar 

plume, we must remember that the concentration distribution is non-negative. This can 
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be achieved in two very simple ways. We can either truncate the field after generation, 

i.e., reset all negative values to zero, or we can generate the logarithm of the 

concentration. If we use a Gaussian probability distribution for the random numbers at 

each iteration level in the recursive generation, then the final sum will also have a 

Gaussian distribution. Thus, truncation of the negative values will produce a clipped- 

normal distribution, while generation of lnc (where c is the concentration value) will 

give a log-normal distribution. The recursive refinement technique can thus be used to 

produce fields with two of the most commonly used probability distributions. It should 

be noted that atmospheric observations (Sawford, 1987) as well as the LES calculations 

show that the concentration pdf (probability distribution function) is more complex than 

either the above distributions, but both are valuable representations in appropriate 

regimes. 

The transformation of the Gaussian pdf into the clipped normal or lognormal pdf 

by this simple technique does not affect the fractal properties of an iso-surface. Our 

analysis of the fractal nature of the scalar field has only considered scalar iso-surfaces, so 

we must consider the effect of the transformation on these level surfaces.. The method 

can be described as a two-step process; first an untransformed scalar field, g, is generated, 

then the desired concentration field is defined as c=F(g). The nonlinear function F 

represents either truncation or exponentiation for the two distributions described above. 

A level surface of c is defined as the set of points, x, where C{X)=CQ, say. If F is 

monotonic, then a unique value go exists such that F(go)=co, provided CQ is a realizable 

value, i.e., it lies within the range of F. Then the iso-surface c=co, is identical to the level 

surface g=go, i.e., it is the same set of spatial points. The fractal properties are then 

obviously identical. The two transform functions utilized in our generation scheme are 

both monotonic, so we preserve the iso-surface fractal properties of the Gaussian field. 
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In order to test the generation scheme, we consider a one-dimensional, 

homogeneous field, c(x), with unit mean and variance of. We generate a periodic field 

on a domain of length L using an initial grid size Ao. The clipped normal Gaussian 

parameters (^c aG) are defined so that the pdf 

p(c) = yd(c) + 
GQ-^IK 

exp -{c-ßo) 
2\ 

2crG 

,c>0 (1) 

has unit mean and variance ac. The intermittency, y, is defined as 

1 y = - 
'     2 

l-erf PG   ] 
aGV2"J 

(2) 

(Lewellen and Sykes, 1986). Similarly, the log-normal parameters {ßi,Oi) defined as 

^=4m(l + ^2) -      (3) 

of =ln(l+a?) (4) 

so that 

P(x) = 
Oi+jln 

exp 
2o?   J 

(5) 

where jc=lnc (Csanady, 1973). In the rest of this discussion, we use the clipped-normal 

parameters to be specific, but all results apply similarly for the log-normal distribution. 

The initial variance for the recursive iteration, OQ» must be chosen to produce the 

required variance, OQ. Since the random additions are independent, the final variance 

after N iterations is the sum of the geometric series, so that 

4 = oljrr2ra 

r=0 
^_2~2(W+l)a 

= ai -la 1-2 

for N refinements of the original grid. 

(6) 
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The mean concentration value is obtained by specifying ^ as an initial value for 

the iteration on the coarse grid. This will be preserved through the random additions 

since they all have zero mean. The final result for c(x) is obtained by truncating the 

random field at c=0. 

Results from this scheme are illustrated in Fig. 5 for 10 refinements on a unit 

domain, i.e., L=\ and A0=0.25. The results are shown for <rc=0.25, with mean statistics 

from 1000 realizations of the fractal field and a=0.7. The realization shown in the figure 

is typical of the set. The ensemble mean is close to unity, as required, but the variance 

shows distinct non-uniformity across the domain. 

The problem with the variance is easily traceable to the interpolation step in the 

iteration. The geometric sum (6) is only valid on the initial grid. Intermediate points all 

involve an interpolation between random values which necessarily reduces the variance. 

The reduction is evident in the complex pattern of the variance, which shows increasing 

errors on finer grid locations. The initial coarse grid points are isolated points with the 

correct variance. 

It might be argued that the variance error is not important since the location of the 

initial grid can be randomly selected to produce a homogeneous ensemble variance. 

However, this ensemble average will be smaller than o%. Furthermore, the mean value 

also shows errors, as illustrated in Fig. 6, when oc is larger. Here, <Tc=2 and the 

realization shows the highly intermittent nature of the concentration field. The reduction 

in the variance prior to the truncation affects the ensemble mean value here, as can be 

seen from (1). If GG is reduced while \IQ remains fixed at some negative value, then the 

probabilities of zero concentration will increase and the mean and variance will decrease. 

In this case, randomizing the location of the initial grid will produce an erroneous 

ensemble mean value. 
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The origin of the homogeneity problem is the choice of the initial grid and 

subsequent interpolation onto the finer grid. We can incorporate the 'sum of pulses' 

concepts of Lovejoy and Mandelbrot (1985) to randomize the fractal generation and 

maintain homogeneity. Lovejoy and Mandelbrot use square pulses with an exponential 

smoothing factor, but we prefer to use triangular functions to simplify the computation. 

We adapt the method to the recursive iteration framework by replacing the addition of a 

random number on the grid of size A„ by the addition of an appropriate pulse. 

Define the unit triangle function of width A at location XQ as 

T(x;x0,A) = ' 
\x-x0\      , , 

i-1 '- , bc-x0 <A 

0 , |jc-x0|>A 

(7) 

Consider iteration level n at grid size A„ with the set of locations 

{*(«>= (/-1)A„,/ = 1,M}. 

The concentration field is augmented at this level by the addition of the function, 

M 

c^(x) = ^e^T(x;yin\An) (8) 

where e\n) e N(0,an), i.e., a random selection from a normal distribution with zero mean 

and standard deviation an. Also, the pulse locations, y}n\ are randomly selected from a 

uniform distribution over the interval [xjrt) - A„/2, x\n) +A„/2J. The triangular pulse is 

thus randomized over the appropriate scale and avoids defining any special initial grid. 

Note that the concentration increment c^n)(x) is a continuous function of x and must 
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therefore be added onto the finest grid. It should be noted that the recursive refinement 

method is recovered by setting yjn) = x\n), i.e., non-random pulse locations. 

The variance scaling to obtain Go is more complicated for the triangular pulses 

since we have to account for the random position of the pulse, but a straightforward 

integration of the shape function yields 

2     fi_2-2^+1)") 

^ = 3^      l-2-2a     • (9) 

The results from the pulse method with Gc=2 are shown in Fig. 7. The ensemble statistics 

show very good homogeneity and agreement with the analytic prescription. The 

randomized pulse locations remove the special nature of the initial grid and retain a 

properly scaled fractal. 

The application of the generation technique to represent real plumes must deal 

with inhomogeneous fields, however, so we next consider a Gaussian concentration 

distribution. Suppose 

c=e-*2 

~> = o>ce-*2 

where the overbar denotes ensemble mean, and the prime denotes fluctuation from the 

mean. We generate the representation for x € [-5,5] and we use Ao=1.25. This implies a 

relative large spatial correlation relative to the spread of the distribution, but is typical of 

the LES results. 

The first test, shown in Fig. 8, uses the value of G„(X) at x\n) as the variance for 

the selection of eJ-n), i.e., the random number is selected on the basis of the variance at 

the mean centroid of the pulse. As in the homogeneous case, the mean value ßa(x) is 
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used as the initial concentration field to maintain the correct ensemble mean. The use of 

the local value causes difficulties, however, as seen in the figure. The relative large 

correlation scale distorts the tails of the distribution. The problem stems from the 

inaccurate representation of the local statistics by the triangular pulse. With the pulse 

amplitude determined by the centroid location variance, there is an effective spatial 

smoothing of the concentration statistics. The nonlinear character of the clipped-normal 

transformation induces severe distortions in the final results, as seen in the figure. 

The predictions for the inhomogeneous case were greatly improved by using a 

local variance to scale the triangular pulse. Thus, equation (8) is replaced by 

M 
cO\x) = J^e^cyn(x)T(x ; y{">,A„) (10) 

;=i 

where e\n) eN(0,l). Results using (10) are shown in Fig. 9 for the Gaussian 

concentration distribution. The agreement with the ensemble statistics is greatly 

improved. 

Spatial correlations are an important characterization of the larger scale plume 

fluctuations, and will be controlled by our selection of A0, since this represents the 

maximum range of the correlation. Spatial correlation functions for both a homogeneous 

fractal and the inhomogeneous Gaussian field are shown in Fig. 10 for several values of 

a. The correlation is defined at x=Q, i.e., 

PM=,J1°™ 
(C'2(0)C'2M) 

and shows a similar monotonic decrease for both cases. We actually show 1-p on a log- 

log scale to confirm the power law behavior for small separations; the correct slope for a 

fractal field is 2a. As might be expected, the integral scale is smaller for smaller values 
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of a , that is, for higher fractal dimensions, since there is relatively more fluctuation 

variance in the smaller scales. The point where p falls to 0.5 ranges from 0.2Ao to 0.4Ao 

as a increases from 0.4 to 0.8. For a =0.65, as used in our fractal field generation in 

section 4, the corresponding value was roughly 0.33Ao. This relationship allows us to 

specify Ao if we are given the correlation scale of the plume fluctuations. 

The pulse generation technique is easily extended to higher dimensions by using 

the product of triangle functions for each separate dimension. The definition of the 

variance in (9) will contain a 2/3 factor for each dimension, but the rest of the 

methodology is unchanged. 

4.  Comparison With LES Realizations 

The fractal generation scheme described in the previous section can be applied to 

the fields from the LES plume calculations. We first consider the free-convection case at 

xlzi =8. This corresponds to a non-dimensional distance X=2 downstream, as defined by 

Henn and Sykes (1992). Here, 

zi U 

and n is the mixed layer depth, U is the horizontal translation speed, and w* is the 

convective scaling velocity (Deardorff, 1970). The mean concentration and the r.m.s. 

fluctuation for the cross-section at xlzi =8 are shown in Fig. 11. The plume is almost 

completely mixed throughout the depth of the turbulent layer, and the fluctuation 

intensity, <rc / c, is roughly 1 in the main part of the plume. The fractal generation also 

requires a correlation scale to determine the initial grid size, Ao. The lateral correlation 

scale, defined as the range at which the correlation coefficient is 0.5, was shown to be 
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roughly 0.25z(- at the plume centerline (Henn and Sykes, 1992). Thus, using the results 

from the previous section with a =0.65, we specify Ao=0.75z(-. 

The LES realizations are shown in Fig. 12 while the fractal representations using 

a clipped-normal distribution are presented in Fig. 13; the log-normal fractal is shown in 

Fig. 14. The general character of the plume is well represented by the fractal model. The 

LES resolution is insufficient to check very small scale fluctuations, but the scale and 

magnitude of the dominant features match well. The principal difference between the 

three sets of realizations is evident in the low concentration regions. The clipped-normal 

representation produces too many zero values compared with the LES, while the 

log-normal has too few. This is completely consistent with the one-point pdf results from 

the LES, which showed that the distribution was intermediate between the two idealized 

shapes. 

Box-counting results for the fractally generated convective boundary layer plume 

are shown in Fig. 15 for both clipped-normal and log-normal distributions. Both plots 

demonstrate self-similarity over most of the range of scales and are consistent with the 

fractal analysis of the LES convective plume. The fractal dimension is 1.32 ±0.05 for the 

clipped-normal distribution and 1.27±0.05 for the log-normal, compared with the 

specified dimension of 1.32, as found in the fractal analysis of the LES convective 

boundary layer plume. The log-normally generated realizations tended to produce a 

fractal dimension slightly lower than the specified value, and this is attributable to finite 

resolution and statistical sampling. The dimension is obtained from a relatively low 

isosurface value, so that a reasonably extensive contour is available, but the probability 

distribution becomes increasingly intermittent in the edges of the plume and increasingly 

large samples are required to represent the fluctuations properly. The fractal measure was 

obtained for contour values in the same range as used for the LES data analysis, and 

showed a tendency to reduce as the threshold was reduced.   The clipped normal 
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distribution does not show the same effect, since all small threshold values define the 

clipped region which is not strongly dependent on the outer regions of the plume. 

Examples of the neutral boundary layer LES plume statistics and realizations are 

given in Figs. 16 and 17 and can be compared with the fractal plumes in Fig. 18. The 

log-normal distributions are shown here, since the LES pdf s were closer to log-normal. 

The spatial correlation scale was shown to be about 0.09// (Sykes and Henn, 1992), and 

we therefore use Ao=0.25# in the fractal generation scheme. The fractal technique is not 

able to reproduce the coherent distortion of the plume that can be seen in the LES 

realizations, such as the rolled-up feature on the left of Fig. 17(b). There, is an 

appropriate spatial length scale for the structures in the fractal field, however, and we 

have accurately matched the one-point statistics. The one-point pdf is strictly log-normal, 

due to the addition of independent normally distributed contributions, and we know that 

this is only a good approximation for the central region of the neutral layer plume. The 

distribution in the LES plume edges is more intermittent, as can be seen in the larger 

region of low-level concentration in the fractal fields. The LES realization shows regions 

of "clean" air mixed well into the plume, implying an intermittent pdf. The fractal 

dimension of the generated 'plumes' was 1.30±0.05, somewhat lower than that specified 

from the LES neutral boundary layer results (2)=1.36). The clipped normal distribution is 

too intermittent, however, and further work is needed to develop a proper representation 

of the general probability distribution. 

5.  Concluding Remarks 

The LES results of Sykes and Henn (1992) and Henn and Sykes (1992) for 

turbulent plume dispersion have been used to determine a fractal dimension for the 

concentration field. Perimeter-area relations and box counting methods were utilized in 

the analysis of scalar concentration fields. The dimension of a concentration contour in a 

A-18 



two-dimensional cross-section was found to be roughly 1.30 - 1.35 using the two 

different estimation methods. This is slightly smaller than observational estimates from 

natural clouds. 

The recursive refinement technique has been adapted to provide a consistent 

representation of the mean and variance of an inhomogeneous concentration field with a 

clipped-normal or log-normal one-point pdf. The interpolation methodology of the 

standard method was replaced by a randomized pulse approach to obtain a good match 

with the ensemble statistics. The fractal generation scheme can be used to generate a 

concentration field with the desired fractal dimension and accurate ensemble mean 

moments of first and second order; the scheme also requires the specification of a spatial 

correlation scale as the outer scale for the fractal field. 

The application of the resulting technique using ensemble statistics produced 

reasonably good 'realizations' of the LES plume. The general structure of the plume is 

reproduced well, although there are differences between the LES pdf s and the idealized 

shapes. Further work will be needed to generalize the pdf s. 

In summary, we have presented a relatively simple fractal generation technique 

capable of reproducing the mean and variance of an inhomogeneous field in multiple 

dimensions. The technique can be used in conjunction with parameterized dispersion 

models such as Sykes et al. (1986), which predict mean and variance of the concentration, 

to generate quantitatively accurate realizations of an instantaneous field. 
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Figure captions 

Figure 1. Transverse cross-section of instantaneous iso-concentration contours from 

high-resolution LES fields with c/cm = 0.01, where cm is the maximum 

mean concentration over multiple realizations, (a) Neutral boundary layer at 

x/H=5. (b) Convective boundary layer at x/zi=S. 

Figure 2. Fractal analyses of neutral boundary layer, (a) Perimeter-area analysis. P is 

perimeter in meters and A is area in square meters, (b) Box-counting 

analysis. R is normalized box size and N is the number of boxes counted. 

Figure 3. Fractal analyses of convective boundary layer, (a) Perimeter-area analysis. 

P is perimeter in meters and A is area in square meters, (b) Box-counting 

analysis. R is normalized box size and N is the number of boxes counted. 

Figure 4. Schematic illustration of recursive refinement. Points on initial grid shown 

as solid circles with linear interpolation as solid line. First refinement 

shown as open circles with random displacement from first level function. 

Figure 5. One-dimensional recursive refinement fractal generation for a homogeneous 

concentration field with <JC/C =0.25.    Solid lines are from fractal 

generation and dashed lines are the target statistics, (a) Individual 

realization, (b) Mean (c) and r.m.s. fluctuation concentration {a) from 

1000 realizations. 

Figure 6. One-dimensional recursive refinement fractal generation for a homogeneous 

concentration field with acjc = 2. Solid lines are from fractal generation 

and dashed lines are the target statistics, (a) Individual realization, (b) 

Mean (c) and r.m.s. fluctuation concentration (<r) from 1000 realizations. 
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Figure 7.    One-dimensional random pulse fractal generation for a homogeneous 

concentration field with ac/c = 2. Solid lines are from fractal generation 

and dashed lines are the target statistics, (a) Individual realization, 

(b) Mean (c) and r.m.s. fluctuation concentration (ex) from 1000 

realizations. 

Figure 8. One-dimensional random pulse fractal generation for an inhomogeneous 

concentration field with ac/c = 2 and no local scaling. Solid lines are from 

fractal generation and dashed lines are the target statistics, (a) Individual 

realization, (b) Mean (c) and r.m.s. fluctuation concentration (cr) from 

1000 realizations. 

Figure 9. One-dimensional random pulse fractal generation for a inhomogeneous 

concentration field with crc/c = 2 and local scaling.  Solid lines are from 

fractal generation and dashed lines are the target statistics, (a) Individual 

realization, (b) Mean (c) and r.m.s. fluctuation concentration (<r) from 

1000 realizations. 

Figure 10. Correlation coefficient for one-dimensional fractal generation. Solid lines 

are from fractal model and dashed lines are theoretical values (slope=2a). 

(a) homogenous concentration field, (b) inhomogeneous concentration field. 

Figure 11. Transverse cross-section of the mean concentration and the r.m.s. fluctuation 

contours for convective boundary layer. Contours normalized by the 

maximum mean concentration (cm).   Downstream location is at xfcj=8. 

(a) Mean concentration, (b) R.m.s. fluctuation. 

Figure 12. Two LES convective boundary layer realizations of c/cm at */z,=8. 

Contours at 0.1, 0.2, 0.5, 1, and 2. Stippled areas are equal to or greater 

thanl. 
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Figure 13. Two fractal realizations of c/cm at x/zi=S using LES convective boundary 

layer statistics with clipped-normal distribution. Contours at 0.1,0.2,0.5, 1, 

and 2. Stippled areas are equal to or greater than 1. 

Figure 14. Two fractal realizations of c/cm at x/zi=8 using LES convective boundary 

layer statistics with log-normal distribution. Contours at 0.1, 0.2, 0.5, 1, 

and 2. Stippled areas are equal to or greater than 1. 

Figure 15. Box-counting analyses of fractally generated convective boundary layer 

plume, (a) Clipped-normal distribution, (b) Log-normal distribution. R is 

normalized box size and N is the number of boxes. 

Figure 16.    Transverse cross-section of the mean concentration and the r.m.s. fluctuation 

contours for neutral boundary layer. Contours normalized by the maximum 

mean concentration (cm).   Downstream location is at x/H=5. (a) Mean 

concentration, (b) R.m.s. fluctuation. 

Figure 17. Two LES neutral boundary layer realizations of c/cm aix/H=5. Contours at 

0.1,0.2,0.5,1,2, and 5. Stippled areas are equal to or greater than 1. 

Figure 18. Two fractal realizations of c/cm at x/H=5 using LES neutral boundary layer 

statistics with log-normal distribution. Contours at 0.1,0.2,0.5,1,2, and 5. 

Stippled areas are equal to or greater than 1. 
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z/H 

Z/Zi 

Figure 1. Transverse cross-section of instantaneous iso-concentration contours 
from high-resolution LES fields with clcm = 0.01, where cm is the 
maximum mean concentration over multiple realizations, (a) Neutral 
boundary layer at x/H =5. (b) Convective boundary layer at A/Z,=8. 
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Figure 2. Fractal analyses of neutral boundary layer, (a) Perimeter-area analysis. 
P is perimeter in meters and A is area in square meters, (b) Box-counting 
analysis. R is normalized box size and N is the number of boxes counted. 
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Figure 6. One-dimensionai recursive refinement fractal generation for a homogeneous 
concentration field with aJc-2. Solid lines are from fractal generation 
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(c) and r.m.s. fluctuation concentration (<r) from 1000 realizations. 
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Figure 7. One-dimensional random pulse fractal generation for a homogeneous 
concentration field with <Tc/ c =2. Solid lines are from fractal generation 
and dashed lines are the target statistics, (a) Individual realization, (b) Mean 
(c) and r.m.s. fluctuation concentration (cr) from 1000 realizations. 
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Figure 8. One-dimensional random pulse fractal generation for an inhomogeneous 
concentration field with al c=2 and no local scaling. Solid lines are from 
fractal generation and dashed lines are the target statistics, (a) Individual 
reahzaüon. (b) Mean (c) and r.m.s. fluctuation concentration (a) from 1000 
realizations. 
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Figure 9. One-dimensional random pulse fractal generation for an inhomogeneous 
concentration field with ad c =2 and local scaling. Solid lines are from 
fractal generation and dashed lines are the target statistics, (a) Individual 
realization, (b) Mean (c) and r.m.s. fluctuation concentration (a) from 1000 
realizations. 
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Figure 11. Transverse cross-section of the mean concentration and the r.m.s. 
fluctuation contours for convective boundary layer. Contours 
normalized by the maximum mean concentration (cm). Contour 
interval of 0.1. Downstream location is at x/z,=S. (a) Mean 
concentration, (b) R.m.s. fluctuation. 
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Figure 12. Two LES convective boundary layer realizations of cl cm at.a/z,=8. 
Contours at 0.1,0.2,0.5,1, and 2. Stippled areas are equal to or 
greater than 1. 

A-37 



A.R.A.P REPORT NO. 710 

APPENDIX B 

A Fractal/Multifractal Representation of the Small- 
Scale Structure in a Turbulent Plume 

R. I. Sykes 

R. S. Gabruk 

D. S. Henn 

ARAP Group, Titan Research and Technology Division 

Titan Corporation 

Princeton, New Jersey 

Submitted to Journal of Applied Meteorology 

July 1994 

B-l 



Abstract 

An improved method for representing the small-scale structure of a turbulent 

scalar field using fractal recursion techniques is described. The model generalizes the 

fractal successive refinement method described by Sykes and Gabruk (1994) to include a 

more realistic description of the pseudo-dissipation field, i.e., the square of the scalar 

gradient. Turbulent dissipation fields are known to be multifractal, so a multifractal 

generation technique has been incorporated into the fractal refinement model to yield a 

scalar field with fractal iso-surfaces but with a multifractal pseudo-dissipation field. 

The model fields are compared with LES realizations of turbulent scalar 

dispersion and shown to provide improved agreement with the small-scale structure. The 

simple combination of fractal and multifractal properties employed in the model also 

provides insight into the structural nature of the random scalar field. Finally, the 

generation technique is completely localized in physical space and is therefore applicable 

to inhomogeneous fields. 
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1.  Introduction 

The complex structure of the scalar concentration field as it is dispersed in a 

turbulent flow has been extensively studied using the techniques of fractal geometry. 

Initial attempts to characterize the concentration field were based on analyzing the 'cloud 

boundary' from photographic data (e.g., Lovejoy 1982; Rys and Waldvogel 1986; Prasad 

and Sreenivasan 1990a) and used the classical 'perimeter-area' relations or 'box-counting' 

methods of fractal geometry (Mandelbrot, 1982). For a fractal boundary, there is a 

power-law increase in the length of the boundary as it is increasingly resolved in finer 

detail. This type of analysis can only be applied to sets of points, in this case the 

boundary of a cloud, and cannot give a complete description of the function, c(x), i.e., the 

concentration value as a function of spatial location, x. More recently, the multifractal 

has been introduced (Benzi et al. 1984; Frisch and Parisi 1985; Halsey et al. 1986; 

Meneveau and Sreenivasan 1987a) to characterize the behavior of intermittent fields such 

as the turbulent kinetic energy dissipation. The definition of a multifractal involves the 

functional behavior of the field, and therefore gives a more complete description than 

conventional fractal analysis. 

While the fractal boundary analysis can be criticized as incomplete since it 

attempts to characterize a field through examination of level sets or isosurfaces, this is 

still the predominant description of the concentration field. Sreenivasan (1991) reviews 

many of the fractal turbulence results, and makes a clear distinction between isosurface 

analysis of the concentration field and multifractal analysis of the dissipation field. The 

reason for the distinction lies in the nature of the multifractal spectrum, which is a way of 

describing the distribution of singularities in a field. 

We now present a brief discussion of the multifractal spectrum. See Sreenivasan 

(1991) and Feder (1988) and references therein for greater detail.   If we consider a 
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measure of the field %, e.g. the scalar dissipation, the total measure inside a subregion ftr 

of characteristic size r (a sphere of radius r for example) is given by 

Xr = I   X(x)ddx (1) 

where there superscript d denotes the space dimensionality. The multifractal formalism 

asserts that 

Xr/XL - (r/L)a (2) 

where XL represents the dissipation within the. total domain QL. The exponent a 

depends on the position of the subregion sinqe the multifractal scaling is strictly local and 

is associated with the strength of singularities. This can be seen by noting that Xr ~ ra 

implies % ~ ra~d which diverges for a < d, with smaller values of a associated with 

narrower spikes. Assuming that the entire measure is made up of an infinite number of 

iso-a sets, one attempts to relate the number of r-sized subregions (or "boxes") with a 

-strength singularities in a bandwidth doc. 

N{a)da ~ p(a){r/Lymda (3) 

where p(a) is some «-dependent prefactor. Here, fla) is the singularity or multifractal 

spectrum; it is analogous to the fractal dimension for simple self-similar measures (where 

N(r) ~ r~D), but is a function of the singularity strength. (Thus, the measure is made up 

of a multiplicity of fractal sets or multifractals.) 

This definition is appropriate for singular fields, such as the energy dissipation, 

where the classical power spectrum diverges at high wavenumber and the localization of 

the dissipation in the smallest scales is properly described by the multifractal spectrum. 

While this is precisely the measure required for description of the dissipation field, it is 

not appropriate for a scalar concentration field, which is usually finite at every point in 

space and exhibits a convergent power spectrum. In fact, the multifractal spectrum of the 
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scalar field, which has been shown to have a simple fractal measure, is simply a single 

point. 

Another way of examining a multifractal measure, which turns out to be 

convenient for analysis, is through moment exponents or generalized dimensions. 

Multifractal measure obey a power law relationship given by (e.g. Prasad and 

Sreenivasan 1990) 

2(Jfr/XL)«~(r/I)MD« (4) 

where Dq can be identified as the generalized dimension of Hentschel and Procaccia 

(1983). For q > 0, the sum on the left is increasingly dominated by larger peaks as q 

increases, whereas for q < 0, the sum is increasingly dominated by regions which tend 

towards zero as q decreases. Halsey et al. (1986) show that the (q,Dq) analysis can be 

related to the multifractal spectrum by the following Legendre-transform relations: 

Cc(q) = j-[(q-l)Dq] + l-d (5a) 

/[«(<?)] = q[oc(q) -l + d]-(q- l)Dq (5b) 

The functional description of the dissipation field as a multifractal is more 

complete than the iso-surface fractal description, and has lead several researchers to the 

view that a scalar field should be constructed from a properly defined dissipation field. 

Thus, Wilson, et al. (1991) and Tessier, et al. (1993) invoke 'fractional integration1 to 

derive a scalar concentration field from a dissipation field that has been generated using 

multifractal techniques. Unfortunately, the definition of the dissipation as the square of 

the concentration gradient necessarily involves loss of information, and the concentration 

field cannot be determined without arbitrary assumptions.   In fact, the fractional 
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integration is carried out in Fourier space and does not maintain the correct local relation 

between the dissipation field and the concentration gradient. 

The correct relation between the concentration and dissipation fields can only be 

maintained by generating a scalar concentration field with the proper gradient behavior. 

We therefore begin with a technique for producing the concentration field and investigate 

ways of improving the dissipation field representation. The next section briefly reviews 

the fractal generation method of Sykes and Gabruk (1994) and examines the dissipation 

results from this simple model. Section 3 describes an extension of the model with an 

improved description of the dissipation field and compares the results with laboratory 

measurements of turbulent jets. In Section 4 large-eddy simulations (LES) of a plume 

dispersing in a neutral boundary layer are analyzed and compared with the new model. 

2.   The Recursive Refinement Model 

Sykes and Gabruk (1994) present a fractal generation scheme for representing the 

scalar concentration field in a dispersing plume of material using the technique of 

successive refinement. The basic methodology consists of adding random pulses on 

successively smaller spatial scales with appropriately scaled variance, and is given in 

Peitgen and Saupe (1988) and Feder (1988) as one of the methods for generating 

fractional Brownian motion. Sykes and Gabruk (1994) modify the original scheme to 

randomize the location of the pulses in order to give accurate representation of the scalar 

field variance. They show how the method can be adapted to represent an 

inhomogeneous field and can provide either lognormal or clipped-normal one-point 

probability density functions. The scheme is compared with LES results for turbulent 

plume dispersion from Sykes and Henn (1992) and Henn and Sykes (1992), and shown to 
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give good agreement with the fractal iso-surface results and also qualitative agreement 

with the instantaneous plume structure. 

The fractal generation scheme for a homogeneous scalar field, c(x), can be written 

schematically in the form 

cW = C+XI OmPn ix ~ xni) (6) 
n    i 

where the overbar denotes the ensemble average, n represents the refinement level, and i 

represents the range of overlapping pulse functions that contribute to the concentration 

fluctuation at the location x. The pulse function, Pn(x - xni), is triangular in this scheme 

and centered at xni with a half-width of A„, where A„ = 2~n Ao. The pulse amplitude ani 

is chosen randomly from a Gaussian distribution with zero mean and standard deviation 

<yn , where on=2 cr0. The relationship of the initial variance <TQ to the ensemble 

variance is given in Sykes and Gabruk (1994). The fractal dimension of the field is 

controlled by the parameter, H, which is the co-dimension and is set to 0.65 based on the 

LES results. The fractal dimension of a level surface in a two-dimensional cross-section is 

then 2-H; it is l-H for a time series . A non-negative concentration field is generated by 

truncated negative values of c at zero (giving a clipped-normal distribution), or by 

exponentiating c (giving a lognormal distribution). The clipped-normal and lognormal 

parameters are defined in Sykes and Gabruk (1994). 

Since it has been shown experimentally by Prasad et al. (1988) and Prasad and 

Sreenivasan (1990b) that the scalar dissipation field is multifractal, we now investigate 

the multifractal properties of the generated fields by examining the pseudo-dissipation 

field, x ~ (Sc/St) • The recursive refinement model (6) can be implemented in arbitrary 

spatial dimension by defining the appropriate pulse functions, Pn. Examples of one- 

dimensional concentrations fields and the corresponding dissipation fields from clipped- 

normal and lognormal distributions with unit mean and variance are shown in Figs. 1 and 
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2, respectively. In these idealized cases, a periodic field is generated on a unit domain 

with an initial grid size of A0=0.25. The fields shown are typical fractal generation 

realizations. Other than the clipped regions, the scalar fields are quite similar. 

Furthermore, % appears almost uniformly noisy except in areas of very low (or zero) 

concentration. This result is contrary to the intermittent character observed in various 

flow fields as noted in Prasad et al. (1988) and Prasad and Sreenivasan (1990b) and 

implies that the fractal model does not produce a multifractal dissipation field. 

The absence of multifractal behavior is confirmed by a moment analysis of the 

dissipation field generated by the fractal model. Intermittent fields can be quantified by 

the behavior of various moments of the spatially-averaged dissipation field as described 

in Section 1. By way of using (4), we define 

where Xr denotes the sum of % over r time increments, St. In order to demonstrate the use 

of (4) and (7) in multifractal analysis, one-dimensional realizations 8 times longer than 

those shown in Figures 1 and 2 were created. We could perform a multifractal analysis on 

the actual dissipation fields shown in the figures, however, a longer time series is more 

illuminating since it covers a wider scaling range. Figures 3 shows log-log plots of 

AV («-1) versus r for typical clipped-normal and lognormal realizations. The moment 

curves of a multifractal measure appear linear when plotted in this way so the slope of the 

log-log curve then gives the generalized dimension Dq. Only the positive moments are 

shown because Mq is undefined for q < 0 when c - 0 for the clipped-normal distribution. 

For the larger scales the moment curves indicate monofractal behavior since they show the 

same slope of Dq for all q. However, at the smaller scales, the curves diverge and appear 

to be nonlinear. (This may be due to numerical resolution problems rather than indicating 
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any particular behavior.) These results are in contrast to the experimental observations of 

Prasad et al. (1988) and Prasad and Sreenivasan (1990b). Therefore, a different generation 

scheme is required to produce a dissipation field that is consistent with those observations. 

3.  Generation of a Multifractal Dissipation Field 

Multifractal fields can be generated using a very simple multiplicative cascade 

process. This method has been applied in the so-called 'p-model' of the turbulent kinetic 

energy dissipation field structure by Meneveau and Sreenivasan (1987b). The p-model 

simply involves unequal division of an initially uniform field among the subdivided cells 

in a recursive refinement process. Thus, in a one-dimensional model, when a cell is 

divided into 2 equal length sub-cells, one cell receives a fraction p of the value in the 

original cell, while the other receives a fraction l-p. The process is randomized by 

assigning the fractionp to either cell with probability 0.5; it is assumed that p > 0.5. The 

process is repeated with fixed/? until the smallest scale is reached. It obviously conserves 

the total integral of the field. This model concentrates the dissipation field into localized 

regions, and has been shown to give a multifractal (Benzi et al. 1984). 

The p-model is useful for generating a representation of the dissipation field, but 

our objective is the generation of a scalar concentration field which possesses the proper 

dissipation field structure. As mentioned in Section 1, Wilson et al. (1991) and 

Tessier et al. (1993) have used the multifractal representation of the dissipation field to 

obtain a scalar concentration field by means of 'fractional integration'. Although it does 

preserve the definition of the dissipation as the square of the concentration gradient, the 

procedure is apparently an arbitrary filtering technique. Furthermore, it is also performed 

in Fourier space, which makes its application to inhomogeneous fields difficult The p- 

model, on the other hand, is completely localized in space and we therefore seek to 
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incorporate some of the features of the p-model into the recursive refinement technique, 

(6), as a means of improving the dissipation field representation. 

The basis of the refinement technique is the addition of random pulses at each of a 

succession of smaller scales. The amplitude of the pulses is chosen randomly from a 

distribution with a specified variance. The fractal dimension of the field is determined by 

the rate at which the variance decreases with the scale of the pulses. This procedure 

clearly allocates fluctuation variance uniformly among the pulses at each scale, and 

produces the non-intermittent dissipation result illustrated in Figs, lb and 2b. Since the 

dissipation field is dominated by the smallest scales, we can incorporate intermittency by 

using the p-model to allocate variance at each level of refinement. Thus, instead of 

simply defining 

<72n+l = 2-1Hal (8) 

where n refers to the refinement level, we define a local value for each pulse as 

ojfl = 2l"2*0j/ (9) 

where p' is randomly chosen from the pair {p,\ - p], and <J„ refers to the variance in the 

'parent' cell of the refinement Each parent cell is divided into 2d 'offspring' cells with half 

allocated the variance defined by (9) and the other half allocated the same variance with 

p' replaced by \-p''. The p' -factor is multiplicative since it is applied at each level of 

refinement, but the ensemble average variance is conserved by (9). The variance 

definition contains a factor 2 p'', which clearly has an average value of unity. 

The scheme defined by (6) and (9) consists of a sum of pulses with random 

amplitudes drawn from a local distribution determined by a multiplicative process . That 

is, the p-model is used to determine the local variance for the random pulse amplitude, 

and therefore the smaller scales can be expected to become increasingly intermittent. On 
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the other hand, the concentration field is obtained from the sum of all the pulses and so 

will not be dominated by small scale intermittency. The sum is convergent everywhere 

provided p < 22H~\ which is trivially satisfied if H > 0.5.   Examples of time series 

generated by the new model with p = 0.80 are presented in Figs. 4 and 5. The value of 

0.80 was chosen to give a good fit to the multifractal spectrum (shown below) measured 

by Prasad et al. (1988).   It is to close the value of 0.70 used by Meneveau and 

Sreenivasan (1987b) in modelling the turbulent kinetic energy dissipation and 0.75 

mentioned by Sreenivasan (1991) for scalar dissipation, although in these cases the actual 

dissipation rates are being split instead of variance. The concentration time series look 

similar to the fractal model results in Figs, la and 2a, but the % realizations are clearly 

more intermittent.  The intermittency is confirmed by the moment analysis, shown in 

Figure 6, which now shows evidence of multifractal structure. Typical log-log plots of 

the moment curves show distinct linear regions over 2 orders of magnitude as well as a 

variation of slope with q, all in contrast the original fractal model results. As with the 

original fractal model analysis, time series 8 times longer than those shown in the figures 

are used to compute the moment curves. The linear range appears to hold down to r = 16, 

i.e., 8 times the smallest pulse width. Below this size, the number of grid refinements is 

inadequate to make reliable estimates of Mq. 

The model-generated multifractal spectra, fla), for both the clipped-normal and 

lognormal distributions are shown in Figure 7. These are determined using (5a,b) with 

averaged estimates of Dq from 100 realizations. The fractal/multifractal generation 

scheme gives a very good representation of the spectrum of Prasad et al. (1988). This is 

important since Prasad and Sreenivasan (1990b) suggest that the scalar dissipation 

multifractal spectrum is universal for high Reynolds numbers based on turbulent jet and 

wake experiments. Similarly, Meneveau and Sreenivasan (1987a, 1991) show the 

universality of the kinetic energy dissipation multifractal spectrum based on 
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measurements from wind tunnel boundary layers, wakes, grid turbulence and the 

atmospheric surface layer. 

The analysis of the complete fractal/multifractal model is complicated by the 

summation of the random pulses from a multiplicative cascade process. However, the 

multifractal behavior of the pseudo-dissipation field can be understood as a result of the 

emphasis of the small scales by the gradient operator. Although the series for the 

concentration field is convergent, provided p < 22H~l, the series for the concentration 

gradient is divergent for H<\. The dissipation field is therefore dominated by the 

smallest scales under consideration, and therefore exhibits the properties of the standard 

p-model without summation. The concentration field itself is non-singular and is more 

strongly influenced by the larger scale features which contain more variance. 

As given above, (6) and (9) are applicable to higher dimensions so we now 

examine two-dimensional plume cross-sections generated by the fractal/mültifractal 

model. Realizations of c and % from the clipped-normal and lognormal distributions are 

shown in Figs. 8 and 9. The clipped-normal scalar field is characterized by broad areas of 

either fairly high or zero concentration. The lognormal distribution results in relatively 

few, isolated regions of high concentration surrounded by broad areas of small (but non- 

zero) concentration. The pseudo-dissipation fields from both distributions show many 

narrow spikes, but the lognormal distribution tends to produce them in the isolated 

regions associated with higher concentration levels. The distribution of spikes in % from 

the clipped-normal distribution tends to mirror that of c in that are they fairly uniformly 

distributed over the regions where c> 0. 

The multifractal moment curves from the two-dimension simulations are given in 

Fig. 10 and the resulting multifractal spectra in Fig. 11. The moment curves are 

determined from realizations in a domain 4 times that shown in the Figs. 8 and 9. The 
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raultifractal spectra are essentially averages from 25 such realizations. The moment 

curves show well-defined linear regions over approximately 2 decades, allowing reliable 

estimates of Dq. The multifractal spectra for the two distributions are quite similar and 

also show good agreement with the spectrum presented in Prasad et al. (1988). So 

although both clipped-normal and lognormal distributions as used in this model produce 

fields consistent with the universal spectrum, the pseudo-dissipation fields do have 

somwhat different characteristics. Thus it is important that the correct distribution be 

known. 

3.  Comparison with LES data 

Sykes and Gabruk (1994) present a fractal analysis of the LES neutral boundary 

layer plume calculations of Sykes and Henn (1992). That analysis is augmented here by 

examining the LES-generated pseudo-dissipation field and comparing it with realizations 

generated with the new fractal/multifractal model. However, it should be noted that the 

LES results only cover a limited scaling range of just over one decade and so estimates of 

the generalized dimensions may not be as reliable as in the idealized cases presented in 

the previous section. 

Figures 12 and 13 show one-dimensional time series of c and % from the LES 

calculations and a realization generated with the new technique, respectively. The LES 

time series is taken from a location on the plume centerline at x/H = 6.67 (* is the 

downstream distance from the source) and at the release height of 0.19#, where H is the 

boundary layer height. The fluctuation intensity ratio, <Jc/c, is 1 where ac is the 

standard deviation of the concentration fluctuations. The lognormal distribution is used 

in the fractal generation since that is consistent with the LES-generated distribution at this 

location.   Time is normalized by the autocorrelation time scale rc.   For the LES, 
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TC = O.m/U^, where U^is the wind speed above the boundary layer. For the fractal 

model realization, Tb = 0.33A0 is assumed (Sykes and Gabruk 1994). Since 

A0 = 2nAtLES, where n is some positive integer and the LES timestep AtLES = 0.14TC, TC 

for the model is about three-quarters that of the LES. 

The fractal realization is similar qualitatively in character to the LES time series 

for both c and %. It can be seen that the spikes of % in both series are very similar in 

frequency, duration and amplitude. The similarities are confirmed by the multifractal 

spectra given in Fig. 14. The LES spectrum is determined from average Dq calculated 

from 30 segments lasting 16 timesteps . The segments are limited to this duration since 

fractal/multifractal behavior is not expected for scales much greater than TQ. 

Analyzing two-dimensional LES plume cross-sections and generating 

corresponding model realizations is somewhat problematic since the cross-sections are 

inhomogeneous and the multifractal analysis is strictly valid only for homogeneous 

fields. And it is shown in Sykes and Gabruk (1994) that it is important to use the local 

variance in simulating inhomogeneous plume cross-sections. Therefore, only relatively 

small boxes (16x16 LES grid cells) fully contained within the plume are used for analysis 

so that the regions are "nearly" homogeneous. An LES-generated plume cross-section at 

x/H = 5 and a corresponding model realization are shown in Fig. 15. It should be noted 

that the model realization utilizes the local mean and variance determined from the LES. 

The realizations appear similar to one another as well as to the simple fractal model 

results in Sykes and Gabruk (1994). This is confirmed by the fact that the fractal 

dimensions of the LES and model-generated plumes are the same as that reported by 

Sykes and Gabruk (1994), namely 1.36 for the LES and 1.30 for the fractal model. 

(These represent averages from 6 and 100 realizations, respectively.) 
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Multifractal analysis of X also confirms the simüarity between LES and fractally 

generated realizations. This can be seen in the multifractal spectra given in Fig. 16. The 

fractal/multifractal model results compare very well with the data of Prasad et al. (1988). 

The LES spectrum goes to zero at slightly larger a than the model or experimental 

spectra, indicating a less intermittent dissipation field. However, given the limited 

scaling range and the concomitant uncertainty in Dq, the LES spectrum is reasonably 

close to the experimental results. 

5.   Concluding Remarks 

It has been shown that the scalar pseudo-dissipation field derived from the fractal 

generation scheme of Sykes and Gabruk (1994) fails to exhibit the intermittent, 

multifractal behavior observed in experimental measurements of scalar dissipation fields 

(Prasad and Sreenivasan 1990b). Therefore, an extension to the fractal model is sought 

which will produce a multifractal dissipation field while maintaining the simple fractal 

nature of the scalar field. Noting that a simple binomial multiplicative cascade process 

produces intermittent distributions and has been shown to agree well with measurements 

of turbulent kinetic energy dissipation (Meneveau and Sreenivasan 1987b), a model is 

constructed which randomly allocates variance unequally in a fixed ratio to successive 

levels of refinement Since the scalar field is made up of a summation of random pulses 

from many refinement levels of decreasing variance, it is dominated by the larger scale 

structures that contain most of the variance. The fractal behavior of the scalar field is 

maintained since the average variance at each level of iteration is still controlled by the 

co-dimension and, thus, the power spectra remains unchanged. However, the gradient 

operator involved in calculating the pseudo-dissipation field emphasizes small scales. In 

fact, the summation of pulse gradients diverges, so that the pseudo-dissipation field 
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becomes highly intermittent and exhibits multifractal behavior. An important feature of 

the model is that it is completely local so that it may be applied to inhomogeneous fields. 

Idealized time series are generated with the new fractal/multifractal model using 

clipped-normal and lognormal distributions to define the pulses. An analysis of these 

show that the resulting multifractal spectra agree very well with the (assumed) universal 

spectrum derived from measurements of turbulent jets and wakes (Prasad and 

Sreenivasan 1990b), even though the pseudo-dissipations fields from the two 

distributions are somwhat different in character. 

An analysis of LES neutral boundary layer plumes shows that the pseudo- 

dissipation fields reveal multifractal behavior, although the scaling range is limited. 

Application of the fractal/multifractal model using the LES statistics yields plumes 

realizations which are similar in appearance to the LES realizations. The fractal 

dimensions of plume isosurfaces from the LES and model are close (1.36 and 1.30 

respectively); the model dimension is unchanged from the simple fractal model results 

given in Sykes and Gabruk (1994). The LES multifractal spectrum is close to the model 

and experimental spectra, although it may indicate less intermittency in the LES pseudo- 

dissipation fields. However, given the uncertainty resulting from the small scaling range, 

the match with the presumed universal spectrum is reasonably good. 
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Figure captions 

Fig. 1. One-dimensional recursive refinement fractal generation for a homogeneous 

concentration field with clipped-normal distribution and  <rc/c=l. 

(a) Concentration field, (b) Dissipation field. 

Fig. 2. One-dimensional recursive refinement fractal generation for a homogeneous 

concentration field with lognormal distribution and <rc/c = l. 

(a) Concentration field, (b) Dissipation field. 

Fig. 3. Typical plot of [£ {Xr/XL)«] * *_1 vs. r for the dissipation field of a one- 

dimensional recursive refinement fractal generation for a homogeneous 

concentration field with (7c/c = l. (a) Clipped-normal distribution, (b) 

Lognormal distribution, q = 0,1.02,2, 3, and 4. 

Fig. 4. One-dimensional recursive refinement fractal/multifractal generation for a 

homogeneous concentration field with clipped-normal distribution and 

<rc/c = 1. (a) Concentration field, (b) Dissipation field. 

Fig. 5. One-dimensional recursive refinement fractal/multifractal generation for a 

homogeneous concentration field with lognormal distribution and cc/c = 1. 

(a) Concentration field, (b) Dissipation field. 

Fig. 6. Typical plot of [2(Xr/XL)
9]VM Vs r for the dissipation field of a one- 

dimensional recursive refinement fractal/multifractal generation for a 

homogeneous concentration field with cc/c=l. (a) Clipped-normal 

distribution, (b) Lognormal distribution, q = 0,1.02,2,3, and 4. 
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Fig. 7. Multifractal spectra from the averaged Dq curves of the dissipation fields of 

one hundred one-dimensional recursive refinement fractal/multifractal 

realizations for a homogeneous concentration field with ac/c=l. 

Fig. 8. Two-dimensional recursive refinement fractal/multifractal generation for a 

homogeneous concentration field with clipped-normal distribution and 

oc/c = 1. The vertical axes are scaled arbitrarily, (a) Concentration field, 

(b) Dissipation field. 

Fig. 9. Two-dimensional recursive refinement fractal/multifractal generation for a 

homogeneous concentration field with lognormal distribution and acjc-\. 

The vertical axes are scaled arbitrarily as in Fig. 8. (a) Concentration field, 

(b) Dissipation field. 

Fig. 10.       Typical plot of XC^/^L)* VS
- 

r f°r me dissipation field of a two- 

dimensional recursive refinement fractal/multifractal generation for a 

homogeneous concentration field with ac/c=l. (a) Clipped-normal 

distribution, (b) Lognormal distribution, q = 0,1.02,2,3, and 4. 

Fig. 11. Multifractal spectra from the averaged Dq curves of the dissipation fields of 

twenty-five two-dimensional recursive refinement fractal/multifractal 

realizations for a homogeneous concentration field with ac/c=l. 

Fig. 12. LES neutral boundary layer time series for a sampler at x/H = 5 on the 

plume centerline. Both the concentration and dissipation have been scaled 

by their maximum values for this LES realization, (a) Concentration field, 

(b) Dissipation field. 
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Fig. 13. One-dimensional recursive refinement fractal/multifractal simulation of the 

LES neutral boundary layer time series shown in Fig. 12. Both the 

concentration and dissipation have been scaled by the maximum values from 

the corresponding LES realization in Fig. 12. (a) Concentration field, (b) 

Dissipation field. 

Fig. 14. Multifractal spectra from the averaged Dq curves of the dissipation fields of 

thirty LES one-dimensional realizations and one hundred one-dimensional 

recursive refinement fractal/multifractal realizations with lognormal 

distribution. 

Fig. 15. Neutral boundary layer plume realizations of c normalized by the maximum 

mean concentration at x/H = 5. Contours are 0.1, 0.2, 0.5, 1, 2, and 5. 

Stippled areas are equal to or greater than 1. (a) LES model, (b) 

Fractal/multifractal model. 

Fig. 16. Multifractal spectra from the averaged Dq curves of the dissipation fields of 

six LES two-dimensional realizations and one hundred two-dimensional 

recursive refinement fractal/multifractal realizations with lognormal 

distribution. 
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